Mitotic Stress Is an Integral Part of the Oncogene-Induced Senescence Program that Promotes Multinucleation and Cell Cycle Arrest

نویسندگان

  • Dina Dikovskaya
  • John J. Cole
  • Susan M. Mason
  • Colin Nixon
  • Saadia A. Karim
  • Lynn McGarry
  • William Clark
  • Rachael N. Hewitt
  • Morgan A. Sammons
  • Jiajun Zhu
  • Dimitris Athineos
  • Joshua D.G. Leach
  • Francesco Marchesi
  • John van Tuyn
  • Stephen W. Tait
  • Claire Brock
  • Jennifer P. Morton
  • Hong Wu
  • Shelley L. Berger
  • Karen Blyth
  • Peter D. Adams
چکیده

Oncogene-induced senescence (OIS) is a tumor suppression mechanism that blocks cell proliferation in response to oncogenic signaling. OIS is frequently accompanied by multinucleation; however, the origin of this is unknown. Here, we show that multinucleate OIS cells originate mostly from failed mitosis. Prior to senescence, mutant H-RasV12 activation in primary human fibroblasts compromised mitosis, concordant with abnormal expression of mitotic genes functionally linked to the observed mitotic spindle and chromatin defects. Simultaneously, H-RasV12 activation enhanced survival of cells with damaged mitoses, culminating in extended mitotic arrest and aberrant exit from mitosis via mitotic slippage. ERK-dependent transcriptional upregulation of Mcl1 was, at least in part, responsible for enhanced survival and slippage of cells with mitotic defects. Importantly, mitotic slippage and oncogene signaling cooperatively induced senescence and key senescence effectors p21 and p16. In summary, activated Ras coordinately triggers mitotic disruption and enhanced cell survival to promote formation of multinucleate senescent cells.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PKCι depletion initiates mitotic slippage-induced senescence in glioblastoma

Cellular senescence is a tumor suppressor mechanism where cells enter a permanent growth arrest following cellular stress. Oncogene-induced senescence (OIS) is induced in non-malignant cells following the expression of an oncogene or inactivation of a tumor suppressor. Previously, we have shown that protein kinase C iota (PKCι) depletion induces cellular senescence in glioblastoma cells in the ...

متن کامل

p14ARF Post-Transcriptional Regulation of Nuclear Cyclin D1 in MCF-7 Breast Cancer Cells: Discrimination between a Good and Bad Prognosis?

As part of a cell's inherent protection against carcinogenesis, p14ARF is upregulated in response to hyperproliferative signalling to induce cell cycle arrest. This property makes p14ARF a leading candidate for cancer therapy. This study explores the consequences of reactivating p14ARF in breast cancer and the potential of targeting p14ARF in breast cancer treatment. Our results show that activ...

متن کامل

The atypical E2F family member E2F7 couples the p53 and RB pathways during cellular senescence.

Oncogene-induced senescence is an anti-proliferative stress response program that acts as a fail-safe mechanism to limit oncogenic transformation and is regulated by the retinoblastoma protein (RB) and p53 tumor suppressor pathways. We identify the atypical E2F family member E2F7 as the only E2F transcription factor potently up-regulated during oncogene-induced senescence, a setting where it ac...

متن کامل

Gadd45b deficiency promotes premature senescence and skin aging

The GADD45 family of proteins functions as stress sensors in response to various physiological and environmental stressors. Here we show that primary mouse embryo fibroblasts (MEFs) from Gadd45b null mice proliferate slowly, accumulate increased levels of DNA damage, and senesce prematurely. The impaired proliferation and increased senescence in Gadd45b null MEFs is partially reversed by cultur...

متن کامل

A population of BJ fibroblasts escaped from Ras-induced senescence susceptible to transformation.

Oncogenic stimuli such as H-Ras induce oncogene-induced senescence (OIS) in fibroblasts to protect against transformation. Here we found that a population of the human diploid fibroblasts can escape from OIS induced by H-RasV12. We designated these OIS-escaped cells as OISEC (OIS-escaped cells). OISEC lost the expression of p16 which plays an important role for cell cycle arrest for induction o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2015